skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Barber, Kristin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep neural network (DNN) classifiers are powerful tools that drive a broad spectrum of important applications, from image recognition to autonomous vehicles. Unfortunately, DNNs are known to be vulnerable to adversarial attacks that affect virtually all state-of-the-art models. These attacks make small imperceptible modifications to inputs that are sufficient to induce the DNNs to produce the wrong classification. In this paper we propose a novel, lightweight adversarial correction and/or detection mechanism for image classifiers that relies on undervolting (running a chip at a voltage that is slightly below its safe margin). We propose using controlled undervolting of the chip running the inference process in order to introduce a limited number of compute errors. We show that these errors disrupt the adversarial input in a way that can be used either to correct the classification or detect the input as adversarial. We evaluate the proposed solution in an FPGA design and through software simulation. We evaluate 10 attacks and show average detection rates of 77% and 90% on two popular DNNs. 
    more » « less